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THE LENGTH OF A CUT LOCUS ON A SURFACE
AND AMBROSE’S PROBLEM

JIN-ICHI ITOH

1. Introduction

There are many results about the cut locus C(p) of a point p on a
surface (M, g) going back to H.Poincaré’s old paper [8]. S.Myers proved
that if M is a real analytic sphere, C(p) is a finite tree each of whose
edges is an analytic curve with finite length [9]. It follows that the
total length (1-dimensional Hausdorff measure) of C(p) is finite. In the
case of a C™ surface, C(p) is somewhat complicated. In [3] H.Gluck
and D.Singer constructed a C* metric on S? so that there is a point p
whose cut locus has infinitely many edges sharing a common end point
and thus is not triangulable. Even in this case the total length of C(p)
is finite. Recently K.Shiohama and M.Tanaka showed that even on an
Alexsandrov surface the cut locus of a point carries the structure of a
local tree [10]. It is easy to construct an Alexandrov sphere so that the
total length of a cut locus is infinite.

The purpose of this article is to study the relation between the length
of a cut locus of a surface and the regularity of its metric. In the
following, we will answer the question “When does C(p) have infinite
total length (1-dimensional Hausdorff measure) 7”.

Theorem A. Suppose (M,gq) 1s a complete surface with a Rieman-
nian metric of class C2. Then any compact subset of the cut locus of
p € M has finite 1-dimensional Hausdorff measure.

Theorem B. There is a CY! metric on S? so that there is a point
p € 8% whose cut locus C(p) has infinite total length (1-dimensional
Haudorff measure).

In particular in the case of a compact surface, if the metric has C?
regularity, the total lengths of the cut loci are all finite. If the metric
loses C? regularity, then the cut loci may have infinite total length, and
can further become what we know as a fractal set [7]. In the proof of
Theorem A, we will show that the function, which assigns to each initial
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direction the distance to its cut point, is of bounded variation due to the
fact that the function does not increase rapidly near its local minimum.
In the proof of Theorem B, we will construct a sphere consisting of
countably many flat triangles and constantly curved bi-angles.

W. Ambrose showed that the behavior of the curvature under paral-
lel translation along the broken geodesics emanating from a point in a
complete simply connected Riemannian manifold characterizes the man-
ifold up to isometry, and posed the problem as to whether or not the
behavior of the curvature along the unbroken geodesics emanating from
a point was sufficient to so characterize the manifolds [1]. In the case
of surfaces, we may formulate the problem as follows;

Ambrose’s problem for surfaces. Let M, M be complete Rieman-
nian surfaces. Suppose that there are points p € M and p € M, and
a linear isometry I : T,M — T;M such that G(v(1)) = G(3(1)) for
any geodesic y : [0,1] — M emanating from p, where 7 : [0,1] — M is
the geodesic emanating from p with ¥'(0) = I(y'(0)) and G,G denote
the Gaussian curvature of M, M. If M is simply connected, is there an
isometric immersion f : M — M with f(p) =p and df, = I ?

In [5] J.Hebda answered the problem positively under the additional
assumption that every compact subset of the cut locus of p € M has
finite 1-dimensional Hausdorff measure. Thus Ambrose’s problem for
surfaces with C? metric is solved completely by Theorem A and Hebda’s
result.

Recently J.Hebda himself has proved Theorem A independently in
[6]. But our method of proof is in essence different from his.

The author would like to express his thanks to M.Tanaka for his
valuable comments.

2. Proof of Theorem A

Fix a point p and take a geodesic polar coordinate (r,6) around p so
that the Riemannian metric becomes

ds® = dr’ + (f(r,0))*do>.

The function f(r, ) of class C* satisfies f(0,8) = 0 and £,(0,8) = 0. We
denote the geodesic from p with initial direction 6 by v, (1) (= exp,(r, 8)).
On a geodesic vy, the point of f(r,0) = 0, r # 0 becomes a conjugate
point of p. The function f(r,#) satisfies the differential equation

frr(rﬁ 6) + K(Ta 6)f(r, 0) =0,

where K (r,8) is the Gaussian curvature at the point (r,8). Furthermore
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f(r,8) = 0 has local solutions ¢ = ¢(f) of class C* by the implicit
function theorem. If for some 6, ¢ = ¢(#) has several positive values,
let ¢ = q(f) denote the least such value; otherwise, let ¢(f) = oo.
For any positive number R, put Qg(0) := min{q(8), R}. Note that
Qr is a Lipschitz continuous function, and let Cy(R) be the Lipschitz
constant of Jr. We denote the length of the minimal geodesic from
p (to its cut point) along -y, by p(d). For any positive number R, put
pr(0) = min{p(6), R}.

To prove the Theorem we will show that pg is a function of bounded
variation. Denote the total variation of p (resp. pgr) by V(p) (resp.
V(pr)), and define subsets Eqy, E; of U,M(= 5' = [0,2x]/0 ~ 27) by

By := {6 € $'1n(8) = QO)},

E; := {8 € 57el[0,20(0)] 1 a geodesic loop at p}.

Since Ey, E; are closed sets, S* \ (E; U E;) is a countable union of open
intervals I; which are mutually disjoint, i.e.,

oo

S\ (B UE) = J L.

Lemma 1. The set of locally minimal points of p(0) is included in
E,UE,

Proof of Lemma 1. Assume that p(6) has a local minimum at 6,
such that 6, € E; U E;. We denote a point 7y, (0(61)) by g. Then there
is another minimizing geodesic 7,, from p to q. We can take the unit
tangent vector v at ¢ which satisfies Z(v, —¥s,|q) = £(v, —Ys.lq) < § by
the assumption. Let 7 be the geodesic from ¢ with initial direction v.
Then the first variation formula yields a positive number J such that
71(0, d) is included in the metric ball whose center is p and radius is
equal to p(6,). Thus, we can take a positive number ¢ such that for any
0 € (6,0, +¢€) or (6, — €,0,) the following holds: (1) p(8) > p(6,), (2)
a(f) < p(6,) where vy,(a(0)) is the first point on which +, intersects with
71(0,8), (3) d(~s(p(8)), q) is less than the injectivity radius at gq.

Let o be the minimal geodesic from g to v4(0()). Then Z(—7e,l4, 54)
< Z(—%e,lq,v) < Z. Suppose that the metric ball whose center is p and
radius is equal to 2p(f;) has Gauss curvature bounded below by Kj.
Compare the hinge (yg,,0, Z(—7o,|q,(q)) With the corresponding one
on the constantly curved surface with Gauss curvature Ky. From the
Toponogov’s comparison theorem [2], it follows that d(p,vs(p(0))) <
0(6:) contradicting the assumption.
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Remark. For any interval (6,,6;) C I;, take 8. € [0,,6;] such that
p(0.) is a maximal value of p on [8,,6;]. Then, p is monotone nonde-
creasing on [0,,6,] and p is monotone nondecreasing on [6,, 6,]. Hence

V(plig.,01) = 20(0.) — p(6.) — p(6s).

Now we will examine the variation of pz near Fy, and E;. From
or(0) < Qr(6) and the Lipschitz continuity of )z we obtain the follow-
ing Lemma 2 immediately.

Lemma 2. For any R > 0 there is a positive constant Cy(R) such
that for any 6, € Ey with p(6y) < R and for any 6

pr(0) — pr(6o) < Co(R)|0 — .

Lemma 3. For any R > 0 there is a positive constant C;(R) such
that for any 6, € E; with p(6y) < R and for any 6

pr(6) — pr(6s) < C1(R)|0 — 6.

Sublemma. For any R > 0 there is a positive constant A(R) such
that for any 6, € E, with p(6,) < R and for any 6, with pgr(6;) <
2pR(90):

pr(61) — pr(6o) < A(R)|61 — .

Proof of the Sublemma. When pgr(6,) < pr(6,), the Sublemma is
trivial. Thus we can assume that pr(6) < pgr(6;). Define a smooth

curve o from vy, (pr(61)) to Ye,(pr(61)) by o(8) := expy(pr(61)75(0)).
Then by the definition of distance,

(8, (PR (61)), Ve, (PR (61)))

01 01
<| [Tl @las <| [ 17(6(62),0)6] < AR)I6: 6,

where A(R) := max{|f(r,0)| |0 <r <R, 0 <8 < 2rx}. Hence from the
triangle inequality it follows that

d(p, Yo, (Pr(61))) < d(p,¥8,(Pr(61))) + d(e0 (PR (61)), 6. (PR(61))-
On the other hand, we have
d(p,ve: (Pr(61))) = pr(61),
d(p, Y6, (Pr(61))) < pr(0)-

<
<

Therefore
pr(61) < pr(6o) + A(R)|6; — 6o,
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which completes the proof of the Sublemma.

Proof of Lemma 3. If pg(0) < 2pgr(6y) , Lemma 3 follows from the
Sublemma. If pr(0) > 2pr(6,), we can take 6, such that p(8,) = 2p(6,)
and [0, — 6] < |6 — 6,|. We denote the injectivity radius at p by .
Suppose that |6, — 6| < ¢/A(R). Then from the Sublemma we get

pr(0a) < pr(6o) + A(R)|6, ~ 00| < pr(6o) + ¢ < 2pg(6),
which is a contradiction. Thus we can assume that [0, — 6y > ¢/A(R),
so that
A(R)

Pr(0) = pr(f) SR — ¢ < (R—1)—

< (X 1A - .

|60 — 6o

Now we put C(R) := max{A(R),(R/: — 1)A(R)}. Then Lemma 3
follows.

Combining the Remark, Lemma 2 and Lemma 3 yields the following
Lemma 4 immediately.

Lemma 4.  For any intervals I;, V(pgrlr,) < C(R)m(I;) where
C(R) := max{Cs(R),Ci(R)}, and m(I) is the length of interval I. Fur-

thermore
o

3 Vieals,) < 2nC(R).

i=0

Proposition. For any R > 0, pg is a function of bounded variation.
Proof. For any partition A : 0 =6, < --- < 6, = 27 of [0, 27|, we
will show that

Va= Z lpr(0i-1) — pr(0:)] < 4rC(R).

We define the subsets I', A of {1,...,n} by
I'= {i,(ei—l’ei) N (Eo U El) = @},
A= {i|(0i—1’0i) N (Eo UE]) 75 (2)}

Of course the disjoint union of I and A coincides with {1,...,n}. Then
Va= Z lpr(0i—1) — pr(6:)| + Z lpr(0:i-1) — pR(6:)]-
iel’ i€

By Lemma 4 we get
> lpr(0i1) — pr(6:)] < 27C(R).

ier
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For each ¢ € A, we take 6’ € [6;_,,0;] with §' € (Fy U E,). From Lemma,
2 and Lemma 3, it follows that

|pR(0i—1) - pR(Hi)! < |PR(9i—1) - PR(H')| + |PR(9_’) - pR(ei)l
< C(R)|0;-1 — 64,

so that
Y lpr(6:-1) — pr(6:)| < 27C(R),
i€A

which completes the proof of the Proposition.

In [4], P.Hartman proved that if pp is of bounded variation for any
B > 0, then p is absolutely continuous where p is finite valued. Hence
the following Corollary 1.

Corollary 1. p is absolutely continuous where p is finite valued.

If M is compact, the following Corollary 2 is obvious.

Corollary 2. Suppose (M,g) is a compact surface with a Rieman-
nian metric of class C*. Then p is a function of bounded variation and
an absolutely continuous function. Furthermore the total length of the
cut locus of p € M is finite.

3. Proof of Theorem B

To begin with, on R?, we will draw an infinite tree IT which will
be preassigned as the cut locus. We take points g, ...,y (¢i = 0,1)
inductively as follows (see Figure 1):

(1) qey = (0) 0)7 dioy = (071)7 qay = (07 _1)7
(2) Ger, - erscryr) 1S the point such that d(gie,, .. ) Qe serscrns)) =
(3)*, and the angle from the line through g(,... ,_,) and
Qics,ron1,er) tO the line through g, .. .,y and g, ... ciceq1) 18
equal to —(3)*% if cpy1 = 0, and (3)* % if cpy = L.

Let IT be the union of all segments between q(c, ... ¢,) and g(c, ... .cx,cnps) -

Note that the length of IT is equal to

> 1
28(2)F = oo.
2.2

Next, we will prepare the pieces and construct a sphere by attaching
the pieces to each other. Let N be a positive number, at least greater
than 2. We will determine the proper value of N at the end of this
article. Take two points pg),o = (IV,0) and p),1 = (—N,0) on R?. For
each q,,... c,) we define a point p,,... ) inductively as follows:

(1) P(ey,-,er) IS @ point on the ray from qc, .. cp_,) 10 G(es, - cacrien)>
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(2) d(Q(cl)yp(cl)) = d(Q(0)>p(@);0)a (k = 1)7
d(Q(Cl,”"Ck),p(Ch"',Ck)) = d(Q(O7 Ces ’0),]7(0, o ’0))’ (k > 2)
N e’ ———

Take the point p(c,.... ¢, )ic,,, S the reflection of p(, ... .,y with respect
to the line g,,... o)1, cr,crir)- Bach €dge g, .. 0)qcr, - enrengr) OF IT
takes two triangles

Ap(01,"- ee)d(er, - ex)Yd(er, - ,er Chgr)
and
Ap(cl,... werdice+1 ey ,er)Aer, - ernchqr) -

We denote the union of all these triangles C R? by D (see Figure 1).
Note that on any quadrilateral

AZ’)(cly"' :ck)q(clx"' ,Ck)q(61,~~ ka+1) U Ap(clu"' ,Ck);ck+1q(c1,'“ ,Ck)q(cla"' 7Ck+1)7

the cut locus of the two points {pP(c,,. cx)s Pler, - sen)icnss § COINCides with
the segment g(c, ... c;)(cr, - \cxrcnsn)-
Take bi-angles By, .. ¢,);; (7 =0,1) as follows.
(1) Bicy,. ;s is the geodesic bi-angle on the constant curved sphere
whose diameter is equal to

N — e —
2 k

(2) The vertices of By,.... ¢,);; are the north pole and south pole of
the above constant curved sphere.
(3) Two angles of By, ... ,);; are equal to

4(17(0);0,Q(0),P(0);0) on R? as k=1,
2P, -, 00090, -+ ,0PQ, -+ ,0p0) R a5 k22,
N —’ S —’ |

k k k—1

Note that from the definition, the cut locus of one vertex of B, ... c,);;
coincides with the other vertex. At the point g, there are two hinges
(P@):0,9(c1)s Pleryier)  aDd (D)1, G(er)s Per)i—c,) in 8D. At each
Q(c:,,cx) there are exactly two hinges (pu),Q(er, ) P(x)x) and
(p(*);*,q(ch...yck),p(*);*) in 0D. Attach B(c1,~~~,ck);j (] = 0, 1) to D, iden-
tifying the boundary of B,,... ¢,);; With the above hinges. By this at-
tachment all p(.y and p(,);; become one point, and we will call this point
p. Now we get a piecewise constantly curved sphere S? so that the cut
locus of p coincides with the closure of IT .

Finally we will check that S? has a differential structure. From the
construction, any point € 52 except p has a tangent plane. On the other
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hand, the four angles Z(qg(.,)P(s);;4(s)) are the same. We denote this angle
by ¢o. All the angles of the triangles Ap(, .. c,)8(c1, - c)D(crr - scusa)s

AP(es e )iiUcry ven) e, cngs) Bt the vertices pie, ... co) s Pley, - ca);s aTE
the same. We denote this angle by ¢ (k > 1). It is trivial that

d(q(oy' 70)’q(07 e 70))
PSR N e’

k
1 . T
o = sin™? . s sin (—) —
d(q(oy"' 10)’p(01“' 10)) 2 2
Sy N, s’
k+1 k
Since 1
d(q(o’ -, 09 90, - - ,0)) = (_2')k7
e, e’ e i
k k+1
N -2<d(gg,... ,0pP0,- - ,0) <2V,
N N e’
k+1 k
we have

1 1., . 1,7 1 lk_(lkw)
—(= SV < € (= AL
o () sin ((2) 2) st s g3 (B3
The angle of By,.... c,);; at the vertex is equal to ¢;. Hence, we get the
following estimate of the total angle T'A, around p € S*:

4y Zk%\r—(%)"sin ((%)kg) <TA, < 422"1—\,—1_—2-(%)'° sin ((%)kg) :

k>0 £>0

Therefore, we can take N so that the total angle around p coincides
with 2.
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